login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286432 Numbers of labeled rooted Greg trees (A005264) with n nodes and root degree 2. 1
0, 1, 12, 151, 2545, 54466, 1417318, 43472780, 1536228588, 61466251616, 2746907348768, 135619260805568, 7331022129923648, 430638151053316480, 27315015477709844352, 1860627613021322933248, 135465573609158928964096, 10498038569346091127451136, 862792664850194915870874112 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Numbers of rooted Greg trees with 2 subtrees below root given m labeled nodes (lead index). Among all trees at the same index (see sequence A005264) root bifurcating trees play a central role in philological discourse on the reconstruction of manuscript genealogies. Labeled nodes represent surviving manuscripts, unlabeled nodes hypothetical ones. See also stemmatology/stemmatics, Bédier's paradox.
REFERENCES
J. Bédier. La tradition manuscrite du Lai de l'Ombre: Réflexions sur l'Art d' Éditer les Anciens Textes. Romania 394 (1928), 161-196/321-356.
C. Flight. How many stemmata? Manuscripta 34(2), 1990, 122-128.
W. Hering. Zweispaltige Stemmata. Philologus-Zeitschrift für antike Literatur und ihre Rezeption 111(1-2), (1967), 170-185.
P. Maas. Textkritik. 4. Auflage. Leipzig: Teubner. 1960.
LINKS
Armin Hoenen, S. Eger and R. Gehrke, How many stemmata with root degree k?, Proceedings of MOL 2017, 2017.
FORMULA
T_{m,2} = Sum_{n >= 0} T_{m,n,2}, where T_{m,n,k} = (m/k!) * Sum_{(s,p) in C((m-1,n),k)} (binomial(m-1,s) F(s,p)) + (1/k!) * Sum_{(s,p) in C((m,n-1),k)} (binomial(m,s) F(s,p)), with F(s,p) = Product_{1..k} (g(s_i,p_i)), here g(m,n) = numbers of rooted Greg trees, see (A005264) with m labeled and n unlabeled nodes. s and p are tuples with k elements where each s_i >= 1 and for each p_i : 0 <= p_i < s_i; first term in T_{m,n,k} gives the number of trees with a labeled root, second those for root unlabeled.
EXAMPLE
For n=3, T_{3,2} is T_{3,0,2} + T_{3,1,2} + T_{3,2,2} where T_{3,0,2} = (3/2) * (binomial(2,(1,1)) * product(g(1,0)*g(1,0))) + 0 = 3; T_{3,1,2} = 0 + 1/2 * ((binomial(3,(2,1)) * product(g(2,0)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,0)))) = 6 and T_{3,2,2} = 0 + (1/2) * ((binomial(3,(2,1)) * product(g(2,1)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,1)))) = 3; 3 + 6 + 3 =12.
CROSSREFS
Cf. A005264, number of labeled rooted Greg trees with n nodes.
Cf. A005263, unrooted Greg trees, according to Flight (1990) can also serve as basis for computation of A005624.
Sequence in context: A293153 A015611 A127650 * A189548 A103759 A351526
KEYWORD
nonn
AUTHOR
Armin Hoenen, May 09 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 21:51 EDT 2024. Contains 371781 sequences. (Running on oeis4.)