login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1) and S=(0,1).
2

%I #21 Sep 11 2021 13:48:14

%S 1,2,8,44,285,2028,15338,120960,983108,8172094,69116592,592590616,

%T 5136777504,44928712804,395907022448,3510622573064,31296093794827,

%U 280275392413204,2520017580255461,22736733105613548,205767848345966976,1867240544055742660

%N Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1) and S=(0,1).

%H Alois P. Heinz, <a href="/A286425/b286425.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * d^n / sqrt(n), where d = (3*(71 + 8*sqrt(2))^(1/3))/4 + 51/(4*(71 + 8*sqrt(2))^(1/3)) + 13/4 = 9.443535601593252082001105527294087383986236797... and c = 0.0201623254316291127574085659620180015446126055020315052104102916... - _Vaclav Kotesovec_, Sep 11 2021

%p b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, [1$2],

%p (p-> p+[0, p[1]])(b(x, y-1)+b(x-1, y-1)+b(x-1, y+1))))

%p end:

%p a:= n-> b(n$2)[2]:

%p seq(a(n), n=0..30);

%Y Cf. A224769.

%K nonn

%O 0,2

%A _Alois P. Heinz_, May 14 2017