OFFSET
1,1
COMMENTS
This sequence contains, in addition to the information contained in A286364 (which packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027) also the bit-2 of A072400(n) (its third least significant bit), which is here stored as the least significant bit of a(n). In contrast to A286366, the parity of the highest power of 2 dividing n is not stored.
Thus we have (among other such identities) the following two identities related to equivalence class partitioning:
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
PROG
(Python)
from sympy.ntheory.factor_ import digits
from sympy import factorint
from operator import mul
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def A(n, k):
f = factorint(n)
return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3)))
def a072400(n): return int(str(int(''.join(map(str, digits(n, 4)[1:]))[::-1]))[::-1], 4)%8
def a(n): return 2*a286364(n) + int(a072400(n)/4) # Indranil Ghosh, May 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2017
STATUS
approved