OFFSET
1,1
COMMENTS
This sequence contains, in addition to the information contained in A286364 (which packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027) also information whether the exponent of the highest power of 2 dividing n is even or odd, which is stored in the least significant bit of a(n). Thus, for example, all squares (A000290) can be obtained by listing such numbers n that a(n) is even and both A002260(a(n)/2) & A004736(a(n)/2) are perfect squares.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
PROG
(Python)
from sympy import factorint
from operator import mul
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def A(n, k):
f = factorint(n)
return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3)))
def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
def a(n): return 2*a286364(n) + a007814(n)%2 # Indranil Ghosh, May 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 08 2017
STATUS
approved