login
A286348
Numbers n such that 4^n + (-3)^n is prime.
1
0, 3, 4, 7, 16, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233
OFFSET
1,2
COMMENTS
Numbers n such that (1 + k)^n + (-k)^n is prime:
0 (k = 0);
A285929 (k = 1);
A283653 (k = 2);
this sequence (k = 3);
0, 2, 3, 4, 43, 59, 191, 223, ... (k = 4);
0, 2, 5, 8, 11, 13, 16, 23, 61, 83, ...(k = 5);
0, 3, 4, 7, 16, 29, 41, 67, ... (k = 6);
0, 2, 7, 11, 16, 17, 29, 31, 79, 43, 131, 139, ... (k = 7);
0, 4, 7, 29, 31, 32, 67, ... (k = 8);
0, 2, 3, 4, 7, 11, 19, 29, ... (k = 9);
0, 3, 5, 19, 32, ... (k = 10);
0, 3, 7, 89, 101, ... (k = 11);
0, 2, 4, 17, 31, 32, 41, 47, 109, 163, ... (k = 12);
0, 3, 4, 11, 83, ... (k = 13);
0, 2, 3, 4, 16, 43, 173, 193, ... (k = 14);
0, 43, ... (k = 15);
0, 4, 5, 7, 79, ... (k = 16);
0, 2, 3, 8, 13, 71, ... (k = 17);
0, 1607, ... (k = 18);
...
Primes of the form (1 + n)^(2^n) + n: 5, 83, 65539, 7958661109946400884391941, ...
Numbers m such that (1 + k)^m + (-k)^m is not odd prime for k =< m: 0, 1, 15, 18, 53, 59, 106, 114, 124, 132, 133, 143, 177, 214, 232, 234, 240, 256, ...
Conjecture: if (1 + y)^x + (-y)^x is a prime number then x is zero, or an even power of two, or an odd prime number.
EXAMPLE
3 is in this sequence because 4^3 + (-3)^3 = 37 is prime.
4 is in this sequence because 4^4 + (-3)^4 = 337 is prime.
MATHEMATICA
Select[Range[0, 3000], PrimeQ[4^# + (-3)^#] &] (* Michael De Vlieger, May 09 2017 *)
PROG
(Magma) [n: n in [0..250] | IsPrime(4^n+(-3)^n)];
(PARI) is(n)=ispseudoprime(4^n+(-3)^n) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
STATUS
approved