login
A286315
Number of representations of 10^n as sum of 8 triangular numbers.
2
8, 1332, 1030302, 1007141184, 1000302990372, 1000781337641904, 1000003970597090004, 1000751615026326041904, 1000203571630368710405892, 1004272191614371538730009600, 1000000970912716777250166728808, 1000834130646589459517111102258880
OFFSET
0,1
COMMENTS
a(n) is nearly 10^(3*n) because a(n) is almost (10^n+1)^3.
LINKS
FORMULA
a(n) = A007331(10^n + 1).
a(n) = Sum_{d|10^n+1, (10^n+1)/d == 1 mod 2} d^3.
EXAMPLE
a(0) = Sum_{d|2, 2/d == 1 mod 2} d^3 = 2^3 = 8.
a(1) = Sum_{d|11, 11/d == 1 mod 2} d^3 = 11^3 + 1^3 = 1332.
a(2) = Sum_{d|101, 101/d == 1 mod 2} d^3 = 101^3 + 1^3 = 1030302.
CROSSREFS
Cf. A007331, A062397 (10^n+1), A168575 ((10^n+1)^3), A286314.
Sequence in context: A162090 A017187 A168575 * A270112 A281127 A001418
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 06 2017
STATUS
approved