The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286264 a(n) = 2*(ceiling((n^2)/2)+1) - 1. 2
 3, 5, 11, 17, 27, 37, 51, 65, 83, 101, 123, 145, 171, 197, 227, 257, 291, 325, 363, 401, 443, 485, 531, 577, 627, 677, 731, 785, 843, 901, 963, 1025, 1091, 1157, 1227, 1297, 1371, 1445, 1523, 1601, 1683, 1765, 1851, 1937, 2027, 2117, 2211, 2305, 2403, 2501 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1). FORMULA a(n) > n^2. From Colin Barker, May 05 2017: (Start) G.f.: x*(3 - x + x^2 + x^3) / ((1 - x)^3*(1 + x)). a(n) = 3/2 - (-1)^n/2 + n^2. a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End) EXAMPLE n=2: (1*3*5*7)/(2*4*6*8)=(1*1*5*7)/(2*4*2*8) => a(2)=5=A151800(2^2); n=3: (1*3*5*7*9*11*13*15*17)/(2*4*6*8*10*12*14*16*18)=(1*1*1*1*1*11*13*15*17)/(2*4*2*8*2*12*2*16*2) => a(3)=11=A151800(3^2). MAPLE A286264:=n->3/2 - (-1)^n/2 + n^2: seq(A286264(n), n=1..100); # Wesley Ivan Hurt, May 05 2017 MATHEMATICA Table[2 (Ceiling[n^2/2] + 1) - 1, {n, 1, 40}] PROG (PARI) Vec(x*(3 - x + x^2 + x^3) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, May 05 2017 (MAGMA) [3/2 - (-1)^n/2 + n^2 : n in [1..100]]; // Wesley Ivan Hurt, May 05 2017 CROSSREFS Cf. A007918 (nextprime), A151800 (version 2). Sequence in context: A309427 A211435 A049752 * A147350 A066692 A123533 Adjacent sequences:  A286261 A286262 A286263 * A286265 A286266 A286267 KEYWORD nonn,easy AUTHOR Ralf Steiner, May 05 2017 EXTENSIONS More terms from Colin Barker, May 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 12:33 EDT 2020. Contains 336246 sequences. (Running on oeis4.)