login
Filter-sequence: a(n) = A278223(A064216(n)) = A046523((2*A064216(n))-1).
2

%I #10 May 13 2017 17:24:02

%S 1,2,2,4,2,2,6,2,4,6,2,2,2,6,12,6,8,2,2,2,2,16,2,6,4,6,6,2,2,30,12,6,

%T 6,4,12,6,6,6,6,6,2,2,6,6,30,2,6,2,6,6,2,6,2,6,6,6,6,2,6,6,2,12,2,36,

%U 2,6,4,2,12,30,12,12,2,12,2,24,2,2,6,6,24,2,2,12,2,24,12,2,2,30,30,6,6,2,2,4,6,2,30,6,32,2,6,2,6,2,6,12,4,2,30,2,2

%N Filter-sequence: a(n) = A278223(A064216(n)) = A046523((2*A064216(n))-1).

%H Antti Karttunen, <a href="/A286250/b286250.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A046523(A245448(n)) = A278223(A064216(n)) = A046523((2*A064216(n))-1).

%o (PARI)

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A064216(n) = A064989((2*n)-1);

%o A286250(n) = A046523(-1+(2*A064216(n)));

%o for(n=1, 10000, write("b286250.txt", n, " ", A286250(n)));

%o (Scheme)

%o (define (A286250 n) (A046523 (+ -1 (* 2 (A064216 n)))))

%o (Python)

%o from sympy import factorint, prevprime

%o from operator import mul

%o def P(n):

%o f = factorint(n)

%o return sorted([f[i] for i in f])

%o def a046523(n):

%o x=1

%o while True:

%o if P(n) == P(x): return x

%o else: x+=1

%o def a064216(n):

%o f=factorint(2*n - 1)

%o return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f])

%o def a(n): return a046523((2*a064216(n)) - 1) # _Indranil Ghosh_, May 13 2017

%Y Cf. A046523, A064216, A245448, A278223, A286243.

%K nonn

%O 1,2

%A _Antti Karttunen_, May 07 2017