login
A286238
Triangle A286239 reversed.
2
1, 2, 1, 4, 0, 3, 7, 0, 2, 3, 11, 0, 0, 0, 10, 16, 0, 0, 4, 5, 3, 22, 0, 0, 0, 0, 0, 21, 29, 0, 0, 0, 7, 0, 5, 10, 37, 0, 0, 0, 0, 0, 8, 0, 21, 46, 0, 0, 0, 0, 11, 0, 0, 14, 10, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 67, 0, 0, 0, 0, 0, 16, 0, 12, 8, 5, 10, 79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78, 92, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 27, 21, 106, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 19, 0, 36
OFFSET
1,2
COMMENTS
See A286239.
FORMULA
T(n,k) = A286239(k,n).
EXAMPLE
The first fifteen rows of triangle:
1,
2, 1,
4, 0, 3,
7, 0, 2, 3,
11, 0, 0, 0, 10,
16, 0, 0, 4, 5, 3,
22, 0, 0, 0, 0, 0, 21,
29, 0, 0, 0, 7, 0, 5, 10,
37, 0, 0, 0, 0, 0, 8, 0, 21,
46, 0, 0, 0, 0, 11, 0, 0, 14, 10,
56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55,
67, 0, 0, 0, 0, 0, 16, 0, 12, 8, 5, 10,
79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78,
92, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 27, 21,
106, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 19, 0, 36
PROG
(Scheme) (define (A286238 n) (A286239tr (A002024 n) (A038722 n))) ;; For A286239tr see A286239.
(Python)
from sympy import totient
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def t(n, k): return 0 if n%k!=0 else T(totient(n/k), k)
for n in range(1, 21): print [t(n, k) for k in range(1, n + 1)][::-1] # Indranil Ghosh, May 09 2017
CROSSREFS
Transpose: A286239 (triangle reversed).
Sequence in context: A277994 A334112 A355625 * A286237 A059781 A233905
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, May 06 2017
STATUS
approved