login
A286218
Number of partitions of n into parts with an odd number of prime divisors (counted with multiplicity).
4
1, 0, 1, 1, 1, 2, 2, 3, 4, 4, 6, 7, 9, 11, 13, 16, 19, 23, 28, 33, 40, 46, 55, 65, 76, 89, 104, 121, 141, 163, 190, 219, 253, 290, 334, 383, 439, 502, 573, 653, 744, 845, 961, 1089, 1234, 1395, 1576, 1780, 2007, 2259, 2544, 2856, 3209, 3598, 4033, 4516, 5051, 5644, 6304, 7033, 7843
OFFSET
0,6
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^A026424(k)).
EXAMPLE
a(8) = 4 because we have [8], [5, 3], [3, 3, 2] and [2, 2, 2, 2].
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
`if`(bigomega(d)::odd, d, 0), d=divisors(j)), j=1..n)/n)
end:
seq(a(n), n=0..80); # Alois P. Heinz, May 04 2017
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[OddQ[PrimeOmega[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 04 2017
STATUS
approved