login
A286161
Compound filter: a(n) = T(A001511(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
23
1, 5, 2, 18, 2, 23, 2, 59, 7, 23, 2, 94, 2, 23, 16, 195, 2, 80, 2, 94, 16, 23, 2, 355, 7, 23, 29, 94, 2, 467, 2, 672, 16, 23, 16, 706, 2, 23, 16, 355, 2, 467, 2, 94, 67, 23, 2, 1331, 7, 80, 16, 94, 2, 302, 16, 355, 16, 23, 2, 1894, 2, 23, 67, 2422, 16, 467, 2, 94, 16, 467, 2, 2779, 2, 23, 67, 94, 16, 467, 2, 1331, 121, 23, 2, 1894, 16, 23, 16, 355, 2, 1832
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A001511(n)+A046523(n))^2) - A001511(n) - 3*A046523(n)).
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286161(n) = (2 + ((A001511(n)+A046523(n))^2) - A001511(n) - 3*A046523(n))/2;
for(n=1, 10000, write("b286161.txt", n, " ", A286161(n)));
(Scheme) (define (A286161 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A046523 n)) 2) (- (A001511 n)) (- (* 3 (A046523 n))) 2)))
(Python)
from sympy import factorint
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
def a(n): return T(a001511(n), a046523(n)) # Indranil Ghosh, May 06 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved