login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286142 Compound filter: a(n) = T(A257993(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function. 9
1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 328, 7, 23, 29, 80, 2, 532, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1228, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1957, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2704, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1957, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

MathWorld, Pairing Function

FORMULA

a(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)).

MATHEMATICA

Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017 *)

PROG

(PARI)

A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011

A257993(n) = { for(i=1, n, if(n%prime(i), return(i))); }

A286142(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n));

for(n=1, 10000, write("b286142.txt", n, " ", A286142(n)));

(Scheme) (define (A286142 n) (* (/ 1 2) (+ (expt (+ (A257993 n) (A046523 n)) 2) (- (A257993 n)) (- (* 3 (A046523 n))) 2)))

(Python)

from sympy import factorint, prime, primepi, gcd

def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2

def P(n):

    f = factorint(n)

    return sorted([f[i] for i in f])

def a046523(n):

    x=1

    while True:

        if P(n) == P(x): return x

        else: x+=1

def a053669(n):

    x=1

    while True:

        if gcd(prime(x), n) == 1: return prime(x)

        else: x+=1

def a257993(n): return primepi(a053669(n))

def a(n): return T(a257993(n), a046523(n)) # Indranil Ghosh, May 05 2017

CROSSREFS

Cf. A000027, A046523, A257993, A286144, A286160, A286161, A286162, A286163, A286164.

Differs from A286143 for the first time at n=24, where a(24) = 328, while A286143(24) = 355.

Sequence in context: A249369 A065268 A275509 * A286143 A130298 A128116

Adjacent sequences:  A286139 A286140 A286141 * A286143 A286144 A286145

KEYWORD

nonn

AUTHOR

Antti Karttunen, May 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)