This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286131 Expansion of q^(-1/2) * eta(q) * eta(q^30) * eta(q^35) * eta(q^42) in powers of q. 2
 0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, -1, 1, 1, 0, 0, -3, 1, 0, 0, 0, -2, 0, -1, 1, 1, 1, 0, 0, 0, -1, 1, 1, -1, 0, 1, 0, -1, 1, 0, 0, -1, 0, 1, 0, -1, 1, -1, -2, -1, 0, 1, 1, 4, -1, -1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,40 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 M. Somos, A Remarkable eta-product Identity FORMULA G.f.: x^4 * Prod_{k>0} (1 - x^k) * (1 - x^(30 * k)) * (1 - x^(35 * k)) * (1 - x^(42 * k)). MAPLE seq(coeff(series(x^4*mul((1-x^k)*(1-x^(30*k))*(1-x^(35*k))*(1-x^(42*k)), k=1..n), x, n+1), x, n), n=0..150); # Muniru A Asiru, Jul 29 2018 MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/2) *eta[q]*eta[q^30]*eta[q^35]*eta[q^42], {q, 0, 50}], q] (* G. C. Greubel, Jul 29 2018 *) PROG (PARI) q='q+O('q^50); A = eta(q)*eta(q^30)*eta(q^35)*eta(q^42); concat(vector(4), Vec(A)) \\ G. C. Greubel, Jul 29 2018 CROSSREFS Cf. A286135. Sequence in context: A059530 A193525 A049828 * A285631 A316836 A058612 Adjacent sequences:  A286128 A286129 A286130 * A286132 A286133 A286134 KEYWORD sign AUTHOR Seiichi Manyama, May 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 16:52 EDT 2019. Contains 321432 sequences. (Running on oeis4.)