login
Number of ordered set partitions of [n] into eight blocks such that equal-sized blocks are ordered with increasing least elements.
3

%I #10 May 17 2018 08:05:18

%S 1,288,18600,649440,18650346,378728064,6346968056,99768480240,

%T 1370094506209,17452476893280,204026690329800,2291047776886752,

%U 24663963563727574,256637317406331648,2540192740448641960,24558666993552144288,233835181800425532162

%N Number of ordered set partitions of [n] into eight blocks such that equal-sized blocks are ordered with increasing least elements.

%H Alois P. Heinz, <a href="/A285923/b285923.txt">Table of n, a(n) for n = 8..700</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%p b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,

%p (p+n)!/n!*x^n, add(x^j*b(n-i*j, i-1, p+j)*combinat

%p [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)), x, 9)

%p end:

%p a:= n-> coeff(b(n$2, 0), x, 8):

%p seq(a(n), n=8..30);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[x^j*b[n - i*j, i - 1, p + j]*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2, {j, 0, n/i}]], {x, 0, 9}];

%t a[n_] := Coefficient[b[n, n, 0], x, 8];

%t Table[a[n], {n, 8, 30}] (* _Jean-François Alcover_, May 17 2018, translated from Maple *)

%Y Column k=8 of A285824.

%Y Cf. A285859.

%K nonn

%O 8,2

%A _Alois P. Heinz_, Apr 28 2017