%I #21 Jan 22 2020 08:08:20
%S 1,2,4,8,16,32,64,128,256,472,856,1494,2494,4060,6460,10002,15170,
%T 22492,32596,46824,66076,91716,125784,170582,227426,302210,396144,
%U 514540,663740,850580,1078628,1362312
%N Number of length-n binary sequences whose subword complexity is <= 2i, for all i.
%C The subword complexity of a finite or infinite sequence i is the function sending i to the number of distinct length-i blocks appearing in s.
%H G. Rote, <a href="https://doi.org/10.1006/jnth.1994.1012">Sequences With Subword Complexity 2n</a>, J. Number Theory 46 (1994), 196-213.
%Y Cf. A260881, which counts the same thing for subword complexity <= i+1 instead of <= 2i.
%K nonn
%O 0,2
%A _Jeffrey Shallit_, Apr 28 2017