OFFSET
0,6
COMMENTS
This triangle T(n, k) appears in the e.g.f. of the sum of powers SP(n, m) = Sum_{j=0..m} j^n, n >= 0, m >= 0 with 0^0:=1 as ESP(n, t) = exp(t)*(Sum_{k=0..n} T(n, k)*t^k/k! + t^(n+1)/(n+1)), n >= 0.
The sub-triangle T(n, k) for 1 <= k <=n, see A028246(n+1,k) (diagonal not needed).
For S2(n, m)*m! see A131689.
FORMULA
T(0, 0) = 1 and T(n, k) = Stirling2(n+1, k)*(k-1)! for n >= k >= 1. For Stirling2 see A048993. Stirling2(n, k)*(k-1)! = A028246(n, k) for n >= k >= 1.
Recurrence: T(0, 0) = 1, T(n, n) = (n+1)!/2, T(n, -1) = 0, T(n, k) = 0 if n < k, and T(n, k) = (k-1)*T(n-1, k-1) + k*T(n-1, k), for n > k >= 0.
E.g.f. for column k=0 is 1, and for k >= 1: Sum_{j=1..k}((-1)^(k-j) * binomial(k-1, j-1) * exp(j*x)) - x^(k-1).
O.g.f. for column k = 0 is 1, and for k >= 1: ((k-1)!*x^(k-1) / Product_{j=1..k} (1-j*x)) - (k-1)!*x^(k-1).
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 0 1
2: 0 1 3
3: 0 1 7 12
4: 0 1 15 50 60
5: 0 1 31 180 390 360
6: 0 1 63 602 2100 3360 2520
7: 0 1 127 1932 10206 25200 31920 20160
8: 0 1 255 6050 46620 166824 317520 332640 181440
9: 0 1 511 18660 204630 1020600 2739240 4233600 3780000 1814400
...
MATHEMATICA
Table[If[k == 0, Boole[n == 0], StirlingS2[n, k] k! + StirlingS2[n, k - 1] (k - 1)!], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, May 08 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, May 03 2017
STATUS
approved