login
Number of permutations of [n] with seven ordered cycles such that equal-sized cycles are ordered with increasing least elements.
3

%I #13 May 30 2018 07:17:45

%S 1,196,9114,330750,10094931,234138366,5932023097,142349568361,

%T 3233779086538,74147737383720,1785843031638120,42966579274786440,

%U 1047584220405271360,26222209747260881200,671966452779878874800,17944599541172975286000,485789620369911667323360

%N Number of permutations of [n] with seven ordered cycles such that equal-sized cycles are ordered with increasing least elements.

%H Alois P. Heinz, <a href="/A285858/b285858.txt">Table of n, a(n) for n = 7..450</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%p b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,

%p (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat

%p [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 8)

%p end:

%p a:= n-> coeff(b(n$2, 0), x, 7):

%p seq(a(n), n=7..25);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 8}];

%t a[n_] := Coefficient[b[n, n, 0], x, 7];

%t Table[a[n], {n, 7, 25}] (* _Jean-François Alcover_, May 30 2018, from Maple *)

%Y Column k=7 of A285849.

%Y Cf. A285922.

%K nonn

%O 7,2

%A _Alois P. Heinz_, Apr 27 2017