%I #30 Mar 26 2019 20:42:52
%S 1,121,143,169,187,209,221,247,289,299,323,361,377,391,403,437,481,
%T 493,527,529,533,551,559,589,611,629,667,689,697,703,713,731,767,779,
%U 793,799,817,841,851,871,893,899,901,923,943,949,961,989,1003,1007,1027,1037,1073,1079,1081
%N Possible nonprime residues of k > p# modulo p# for some primorial p# in A002110.
%C Original name: Union of nonprimes p_n# < k < p_(n+1)# and gcd(k, p_n#) = 1, with p_n# = A002110(n).
%C From _Michael De Vlieger_, May 24 2017: (Start)
%C Let p_n# = A002110(n). This sequence includes nonprime p_n# < k < p_(n+1)# but does not repeat terms that have already appeared in the sequence (mainly 1 for p_n# with n > 1).
%C If regarded as a number triangle T(n,k), row length <= A048863(n). (End)
%C Relevant for sieving primes with a wheel of circumference p#: For the 2*3*5 wheel, the only relevant nonprime residue is 1, while for a 2*3*5*7 wheel, there are 5 more nonprime residues {121, 143, 169, 187, 209}. - _M. F. Hasler_, Mar 25 2019
%H Jamie Morken, <a href="/A285784/b285784.txt">Table of n, a(n) for n = 1..1000</a>
%e Primorial(2) = 2*3 = 6 has two totatives (1 and 5), primorial(3) = 2*3*5 = 30 has eight totatives (1,7,11,13,17,19,23,29), etc.
%e Taking the union of these lists and removing the primes gives the sequence.
%t MapIndexed[Select[Range @@ #1, Function[k, And[If[First@ #2 == 1, ! PrimeQ@ k, CompositeQ@ k > 1], CoprimeQ[Last@ #1, k]]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* _Michael De Vlieger_, May 24 2017 *)
%o (PARI) select( n->!isprime(n), setunion((S(p,M)=Set(primes([1,p*M])%M))(11,210), S(13,2310))) \\ _M. F. Hasler_, Mar 25 2019
%Y Cf. A002110, A048863.
%K nonn
%O 1,2
%A _Jamie Morken_, Apr 26 2017
%E Edited by _N. J. A. Sloane_, May 01 2017
%E Incorrect definition replaced and more terms added by _M. F. Hasler_, Mar 25 2019