login
a(0) = 1; a(2*n) = a(n), a(2*n+1) = a(n) + R(a(n)), where R() is the digit reversal.
0

%I #4 Apr 25 2017 10:01:22

%S 1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,

%T 77,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,77,4,8,8,16,8,16,16,77,8,16,16,

%U 77,16,77,77,154,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,77,4,8,8,16,8,16,16,77,8,16,16

%N a(0) = 1; a(2*n) = a(n), a(2*n+1) = a(n) + R(a(n)), where R() is the digit reversal.

%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>

%H <a href="/index/Res#RAA">Index entries for sequences related to Reverse and Add!</a>

%e a(0) = 1;

%e a(1) = a(2*0+1) = a(0) + R(a(0)) = 1 + 1 = 2;

%e a(2) = a(2*1) = a(1) = 2;

%e a(3) = a(2*1+1) = a(1) + R(a(1)) = 2 + 2 = 4;

%e a(4) = a(2*2) = a(2) = 2;

%e a(5) = a(2*2+1) = a(2) + R(a(2)) = 2 + 2 = 4, etc.

%t a[0] = 0; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] + FromDigits[Reverse[IntegerDigits[a[(n - 1)/2]]]] ]; Table[a[n], {n, 0, 90}]

%Y Cf. A001127 (records), A004086, A056964.

%K nonn,base

%O 0,2

%A _Ilya Gutkovskiy_, Apr 25 2017