login
A285692
a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 7 primes.
3
2, 9479, 9767, 10247, 10567, 11047, 11239, 11527, 11719, 12007, 12487, 12919, 13367, 13687, 13879, 14071, 14503, 14951, 15271, 15559, 15991, 16183, 16631, 16759, 17047, 17239, 17431, 17623, 17911, 18199, 18679, 19687, 20359, 20551, 20743, 21031, 21319, 21751, 21943
OFFSET
1,1
COMMENTS
First differences: 9477, 288, 480, 320, 480, 192, 288, 192, 288, 480, 432, 448, 320, 192, 192, 432, 448, 320, 288, 432,...
LINKS
MAPLE
A:= Vector(100): A[1]:= 2:
for n from 2 to 100 do
p:= A[n-1];
do
p:= nextprime(p);
until numtheory:-bigomega(p-A[n-1]) = 7;
A[n]:= p;
od:
convert(A, list); # Robert Israel, Dec 28 2022
MATHEMATICA
NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 7, p = NextPrime@ p]; p] &, 2, 38] (* Michael De Vlieger, Apr 25 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 25 2017
STATUS
approved