|
|
A285677
|
|
{0010->2}-transform of the infinite Fibonacci word A003849.
|
|
4
|
|
|
0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
As a word, A003849 = 01001010010010100..., and replacing each 0010 by 2 gives 0121201012120101201012120101212010...
Warning: "replacing each 0010 by 2" means "replacing each 0010 by 2 from left to right, consecutively". The result is that the word a(8)...a(14)=0010010 in A003849 is replaced by 201, not by 22. - Michel Dekking, Aug 27 2018
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 13] ; (* A003849 *)
w = StringJoin[Map[ToString, s]]
w1 = StringReplace[w, {"0010" -> "2"}]
st = ToCharacterCode[w1] - 48; (* A285677 *)
Flatten[Position[st, 0]]; (* A285678 *)
Flatten[Position[st, 1]]; (* A182761 - conjectured *)
Flatten[Position[st, 2]]; (* A285679 *)
|
|
CROSSREFS
|
Cf. A003849, A284620, A285678, A182761, A285679.
Sequence in context: A104886 A215604 A139351 * A036578 A229764 A077402
Adjacent sequences: A285674 A285675 A285676 * A285678 A285679 A285680
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, May 11 2017
|
|
STATUS
|
approved
|
|
|
|