login
A285587
Expansion of v * (v^4 - 3*v^3 + 4*v^2 - 2*v + 1) in powers of q where r() is the Rogers-Ramanujan continued fraction and v = r(q^5).
2
0, 1, -2, 4, -3, 1, -1, 4, -12, 12, -5, 1, -6, 24, -30, 15, 0, 4, -28, 48, -30, -1, 2, 12, -45, 40, 1, -8, 24, 0, -26, -1, 12, -68, 90, -30, 1, -12, 96, -192, 125, 0, 6, -84, 243, -220, -1, 4, 24, -180, 245, 2, -18, 84, -36, -124, -3, 32, -216, 384, -180, 2, -34, 308
OFFSET
0,3
COMMENTS
G.f. A(q) satisfies: A(q) = v * (v^4 - 3*v^3 + 4*v^2 - 2*v + 1) = r(q)^5 * (v^4 + 2*v^3 + 4*v^2 + 3*v + 1).
CROSSREFS
Cf. A078905 (r(q)^5), A285585.
Sequence in context: A127651 A019641 A085008 * A134893 A227862 A229802
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 22 2017
STATUS
approved