login
Expansion of r(q^5) / r(q)^5 in powers of q where r() is the Rogers-Ramanujan continued fraction.
6

%I #17 Apr 23 2017 06:26:26

%S 1,5,10,5,-15,-25,10,60,25,-110,-150,85,360,155,-505,-675,330,1410,

%T 555,-1925,-2450,1210,4920,1930,-6275,-7875,3710,15000,5720,-18575,

%U -22800,10735,42310,15960,-50605,-61400,28280,110610,41100,-129570,-155250,71060,274320

%N Expansion of r(q^5) / r(q)^5 in powers of q where r() is the Rogers-Ramanujan continued fraction.

%C G.f. A(q) satisfies: A(q) = v / u^5 = (v^4 + 2*v^3 + 4*v^2 + 3*v + 1) / (v^4 - 3*v^3 + 4*v^2 - 2*v + 1), where u = r(q) and v = r(q^5).

%H Seiichi Manyama, <a href="/A285585/b285585.txt">Table of n, a(n) for n = 0..10000</a>

%H Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, <a href="http://doi.org/10.1016/S0377-0427(99)00033-3">The Rogers-Ramanujan continued fraction</a>, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24.

%Y r(q^k) / r(q)^k: A285348 (k=2), A285583 (k=3), A285584 (k=4), this sequence (k=5).

%Y Cf. A078905 (u^5), A229793 (1 / u^5), A285587, A285630.

%K sign

%O 0,2

%A _Seiichi Manyama_, Apr 22 2017