login
A285580
Expansion of q^(-2/5) * (r(q) - r(q^11))^12 in powers of q where r() is the Rogers-Ramanujan continued fraction.
2
0, 0, 1, -12, 66, -220, 483, -648, 120, 1992, -6171, 11120, -12318, 1932, 27921, -77340, 127620, -133040, 26967, 245304, -663808, 1060320, -1084791, 283736, 1653462, -4497924, 7088294, -7244160, 2351346, 9157896, -25659264, 40455420, -41742134, 16119972, 43653276
OFFSET
0,4
COMMENTS
G.f. A(q) satisfies: A(q) = q^(-2/5) * (u - v)^12 = q^(-2/5) * u * v * (1 - 11 * u^5 - u^10) * (1 - 11 * v^5 - v^10), where u = r(q) and v = r(q^11).
LINKS
Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, The Rogers-Ramanujan continued fraction, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24.
CROSSREFS
Cf. A007325 (q^(-1/5) * u), A285581 (q^(-1/5) * (u - v)).
Sequence in context: A223234 A289223 A296914 * A001490 A010928 A080559
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 22 2017
STATUS
approved