OFFSET
0,3
COMMENTS
In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^(m*k)) / (1 - x^k))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (4 + 3/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (4 + 3/m^2)^(7/36) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (103*Zeta(3))^(1/3) * n^(2/3)) * (103*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(7/18) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^(5*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 19 2017
STATUS
approved