%I #11 Feb 10 2021 09:19:44
%S 1,3,4,6,9,11,14,16,17,19,20,22,23,25,28,30,33,35,36,38,41,43,48,50,
%T 53,55,56,58,61,63,66,68,69,71,74,76,81,83,86,88,89,91,94,96,99,101,
%U 102,104,105,107,108,110,113,115,118,120,121,123,124,126,127,129
%N Positions of 0 in A285411; complement of A285413.
%C Conjecture: a(n)/n -> (61-sqrt(3))/26 = 2.279...
%C This conjecture is false. In fact, a(n)/n --> (5+sqrt(17))/ 4 = 2.28077..., the same limit as for A285401(n)/n. The reason is that the generating morphism for (a(n)) has the same incidence matrix as the generating morphism for A285177. - _Michel Dekking_, Feb 10 2021
%H Clark Kimberling, <a href="/A285412/b285412.txt">Table of n, a(n) for n = 1..10000</a>
%e As a word, A285411 = 010010..., in which 0 is in positions 1,3,4,6,9,...
%t s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {0, 1, 0}}] &, {0}, 10] (* A285411 *)
%t Flatten[Position[s, 0]] (* A285412 *)
%t Flatten[Position[s, 1]] (* A285413 *)
%Y Cf. A285411, A285413, A285414.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Apr 27 2017