login
A285381
G.f.: 1/(1 - 1!*x/(1 - 2!*x^2/(1 - 3!*x^3/(1 - 4!*x^4/(1 - 5!*x^5/(1 - 6!*x^6/(1 - ...))))))), a continued fraction.
4
1, 1, 1, 3, 5, 11, 33, 67, 169, 435, 1265, 3035, 8025, 22243, 60721, 191307, 491657, 1404371, 4089633, 12183835, 36872377, 126189219, 350136977, 1062359147, 3386475177, 10757830387, 36121721857, 120817807419, 482847966617, 1391650703939, 4654331013489
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 33*x^6 + 67*x^7 + 169*x^8 + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[1/(1 + ContinuedFractionK[-k! x^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) a(n) = my(A=1+O(x)); for(i=1, n, A=1-(n-i+1)!*x^(n-i+1)/A); polcoef(1/A, n); \\ Seiichi Manyama, Apr 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 17 2017
STATUS
approved