login
A285348
Expansion of r(q^2) / r(q)^2 in powers of q where r() is the Rogers-Ramanujan continued fraction.
8
1, 2, 0, -4, -2, 6, 8, -4, -16, -6, 20, 24, -12, -44, -16, 52, 62, -28, -108, -40, 122, 144, -64, -244, -88, 266, 308, -136, -508, -180, 544, 624, -272, -1008, -356, 1060, 1206, -524, -1920, -672, 1988, 2244, -968, -3524, -1224, 3606, 4048, -1732, -6284
OFFSET
0,2
COMMENTS
Let k(q) = r(q) * r(q^2)^2.
G.f. satisfies: A(q) = (1 + k(q))/(1 - k(q)).
And r(q^2)^5 = k(q)^2 * A(q).
FORMULA
a(n) = A285349(n) - A138518(n) for n>0 (conjectured). - Thomas Baruchel, May 14 2018
CROSSREFS
r(q^k) / r(q)^k: this sequence (k=2), A285583 (k=3), A285584 (k=4), A285585 (k=5).
Cf. A007325, A078905 (r(q)^5), A112274 (k(q)), A112803 (1 + k(q)), A285349, A285355 (k(q)^2).
Sequence in context: A168232 A253136 A216960 * A361008 A163123 A194346
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 17 2017
STATUS
approved