login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285252 1-limiting word of the morphism 0->10, 1-> 0101. 6
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1-> 0101 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 0101 -> 100101100101 -> 010110100101100101010110100101100101; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 0101 -> 100101100101, as in A285252.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 1, 0, 1}}] &, {0}, 11]; (* A285252 *)

Flatten[Position[s, 0]];  (* A285253 *)

Flatten[Position[s, 1]];  (* A285254 *)

CROSSREFS

Cf. A285250, A285253, A285254.

Sequence in context: A005171 A283265 A181406 * A076404 A317961 A010059

Adjacent sequences:  A285249 A285250 A285251 * A285253 A285254 A285255

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 18:59 EST 2019. Contains 329149 sequences. (Running on oeis4.)