login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285239 Number of entries in the n-th cycles of all permutations of [2n]. 3
3, 27, 463, 12217, 441383, 20338679, 1141073295, 75473055841, 5748862140283, 495446888127507, 47648289796265871, 5057570671179281161, 587173799850231036207, 74005641366738437835967, 10062023872139208015273375, 1467822867614662009540883265 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

All terms are odd.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..326

Wikipedia, Permutation

FORMULA

a(n) = A185105(2n,n).

a(n) ~ 2^(3*n-1) * c^(2*n) * n^(n - 1/2) / (sqrt(Pi*(c-1)) * (2*c-1)^n * exp(n)), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, Apr 15 2017, updated Mar 10 2020

MAPLE

b:= proc(n, i) option remember; expand(`if`(n=0, 1,

add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))((j-1)!

*b(n-j, max(0, i-1)))*binomial(n-1, j-1), j=1..n)))

end:

a:= n-> coeff(b(2*n, n), x, 1):

seq(a(n), n=1..20);

MATHEMATICA

b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0] j x, 0]][(j - 1)! b[n - j, Max[0, i - 1]]] Binomial[ n - 1, j - 1], {j, 1, n}]]];

a[n_] := Coefficient[b[2n, n], x, 1];

Array[a, 20] (* Jean-François Alcover, Jun 01 2018, from Maple *)

CROSSREFS

Cf. A185105.

Sequence in context: A193541 A193544 A286306 * A111844 A277352 A118714

Adjacent sequences: A285236 A285237 A285238 * A285240 A285241 A285242

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 7 22:58 EST 2023. Contains 360132 sequences. (Running on oeis4.)