The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285193 Expansion of 1/(1+x+2*x^2) mod 3. 1

%I

%S 1,2,2,0,2,1,1,0,1,2,2,0,2,1,1,0,1,2,2,0,2,1,1,0,1,2,2,0,2,1,1,0,1,2,

%T 2,0,2,1,1,0,1,2,2,0,2,1,1,0,1,2,2,0,2,1,1,0,1,2,2,0,2,1,1,0,1,2,2,0,

%U 2,1,1,0,1,2,2,0,2,1,1,0

%N Expansion of 1/(1+x+2*x^2) mod 3.

%C Periodic with period (1, 2, 2, 0, 2, 1, 1, 0).

%D Arthur Gill, Linear Sequential Circuits, McGraw-Hill, 1966, Eq. (12-6).

%H Colin Barker, <a href="/A285193/b285193.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).

%F From _Colin Barker_, Apr 27 2017: (Start)

%F G.f.: (x^6 + x^5 + 2*x^4 + 2*x^2 + 2*x + 1)/(1 - x^8).

%F a(n) = a(n-8) for n>7.

%F (End)

%p t5:=1/(1+x+2*x^2);

%p t6:=series(%,x,120):

%p t7:=seriestolist(%);

%p t8:=% mod 3;

%o (PARI) Vec((x^6 + x^5 + 2*x^4 + 2*x^2 + 2*x + 1)/(1 - x^8) + O(x^100)) \\ _Colin Barker_, Apr 27 2017

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Apr 26 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 16:43 EDT 2020. Contains 334704 sequences. (Running on oeis4.)