login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285177 0-limiting word of the morphism 0->11, 1-> 001. 3
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->11, 1-> 001 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 11 -> 001001 -> 11110011111001 ->

00100100100111110010010010010011111001; if the number of iterations is odd, the 1-word evolves from 0 -> 11 -> 001001 -> 11110011111001 , as in A285403.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

Index entries for sequences that are fixed points of mappings

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {0, 0, 1}}] &, {0}, 10] (* A285117 *)

Flatten[Position[s, 0]]  (* A285401 *)

Flatten[Position[s, 1]]  (* A285402 *)

CROSSREFS

Cf. A285401, A285402, A285403.

Sequence in context: A144604 A022926 A288520 * A144595 A072785 A188297

Adjacent sequences:  A285174 A285175 A285176 * A285178 A285179 A285180

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 10:09 EST 2019. Contains 329334 sequences. (Running on oeis4.)