This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285083 1-limiting word of the morphism 0->10, 1-> 011. 6
 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The morphism 0->10, 1->011 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 01110 -> 1001101101110  -> 0111010011011100110111001101101110, as in A285080; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 01110 -> 1001101101110, as in A285083. Let v(n) = position of n-th 1.  Then v(n)/n -> (1+sqrt(5))/2, the golden ratio (A001622); see A285082. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 MATHEMATICA s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 1, 1}}] &, {0}, 13]; (* A285083 *) Flatten[Position[s, 0]];  (* A285084 *) Flatten[Position[s, 1]];  (* A285085 *) CROSSREFS Cf. A001622, A285080, A285084, A285085. Sequence in context: A187074 A188398 A288929 * A266982 A051341 A057211 Adjacent sequences:  A285080 A285081 A285082 * A285084 A285085 A285086 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 07:53 EDT 2019. Contains 322327 sequences. (Running on oeis4.)