This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285037 Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromic structures using exactly k different symbols, 1 <= k <= n/2 + 1. 14

%I

%S 1,0,1,0,1,0,2,1,0,3,1,0,4,5,1,0,7,6,1,0,10,18,7,1,0,14,25,10,1,0,21,

%T 63,43,10,1,0,31,90,65,15,1,0,42,202,219,85,13,1,0,63,301,350,140,21,

%U 1,0,91,650,1058,618,154,17,1,0,123,965,1701,1050,266,28,1

%N Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromic structures using exactly k different symbols, 1 <= k <= n/2 + 1.

%C Permuting the symbols will not change the structure.

%C Equivalently, the number of n-bead aperiodic necklaces (Lyndon words) with exactly k symbols, up to permutation of the symbols, which when turned over are unchanged. When comparing with the turned over necklace a rotation is allowed but a permutation of the symbols is not.

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

%H Andrew Howroyd, <a href="/A285037/b285037.txt">Table of n, a(n) for n = 1..2600</a>

%F T(n, k) = Sum_{d | n} mu(n/d) * A285012(d, k).

%e Triangle starts:

%e 1

%e 0 1

%e 0 1

%e 0 2 1

%e 0 3 1

%e 0 4 5 1

%e 0 7 6 1

%e 0 10 18 7 1

%e 0 14 25 10 1

%e 0 21 63 43 10 1

%e 0 31 90 65 15 1

%e 0 42 202 219 85 13 1

%e 0 63 301 350 140 21 1

%e 0 91 650 1058 618 154 17 1

%e 0 123 965 1701 1050 266 28 1

%e 0 184 2016 4796 4064 1488 258 21 1

%e 0 255 3025 7770 6951 2646 462 36 1

%e 0 371 6220 21094 24914 12857 3222 410 26 1

%e 0 511 9330 34105 42525 22827 5880 750 45 1

%e ...

%e Example for n=6, k=2:

%e There are 6 inequivalent solutions to A285012(6,2) which are 001100, 010010, 000100, 001010, 001110, 010101. Of these, 010010 and 010101 have a period less than 6, so T(6,2) = 6-2 = 4.

%o (PARI) \\ Ach is A304972

%o Ach(n,k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}

%o T(n,k=n\2+1) = {my(A=Ach(n\2+1,k), S=matrix(n\2+1, k, n, k, stirling(n,k,2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}

%o { my(A=T(20)); for(n=1, matsize(A)[1], print(A[n,1..n\2+1])) } \\ _Andrew Howroyd_, Oct 01 2019

%o (PARI) \\ column sequence using above code.

%o ColSeq(n, k=2) = { Vec(T(n,k)[,k]) } \\ _Andrew Howroyd_, Oct 01 2019

%Y Columns 1..6 are: A063524, A056518, A056519, A056521, A056522, A056523.

%Y Partial row sums include A056513, A056514, A056515, A056516, A056517.

%Y Row sums are A285042.

%Y Cf. A284856, A284826, A284823, A285012, A304972.

%K nonn,tabf

%O 1,7

%A _Andrew Howroyd_, Apr 08 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 09:33 EST 2019. Contains 329877 sequences. (Running on oeis4.)