login
a(n) is the number of self-conjugate partitions of n which represent Chomp positions with Sprague-Grundy value 10.
0

%I #12 Dec 19 2022 09:42:26

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

%T 1,1,0,0,0,0,0,1,0,0,2,2,1,0,1,2,2,4,3,3,4,6,5,7,11,7,3,10,6,8,15,12,

%U 15,6,8

%N a(n) is the number of self-conjugate partitions of n which represent Chomp positions with Sprague-Grundy value 10.

%C The number of all Chomp positions with Sprague-Grundy value 10 are given in A284784.

%D P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.

%H Thomas S. Ferguson, <a href="https://www.mina.moe/wp-content/uploads/2018/05/GAME-THEORY-Thomas-S.Ferguson.pdf">Game Theory</a> (lecture notes + exercise questions for a course on Combinatorial Game Theory).

%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/41/0/41_0_438/_article">Über mathematische Kampfspiele</a>, Tohoku Math. J. 41 (1936), 438-444.

%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/43/0/43_0_351/_article">Über zwei Abarten von Nim</a>, Tohoku Math. J. 43 (1937), 351-354.

%Y Cf. A112471, A112472, A112473, A284784.

%K nonn

%O 1,45

%A _Thomas J Wolf_, Apr 07 2017