This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284947 Irregular triangle read by rows: coefficients of the cycle polynomial of the n-complete graph K_n. 2
 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 10, 15, 12, 0, 0, 0, 20, 45, 72, 60, 0, 0, 0, 35, 105, 252, 420, 360, 0, 0, 0, 56, 210, 672, 1680, 2880, 2520, 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160, 0, 0, 0, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,8 LINKS Eric Weisstein's World of Mathematics, Complete Graph Eric Weisstein's World of Mathematics, Cycle Polynomial FORMULA T(n, k) = binomial(n, k)*Pochhammer(3, k-3) if k >= 3 else 0. - Peter Luschny, Oct 22 2017 EXAMPLE 1: 0 2: 0 3: x^3 4: x^3 (4 + 3 x) 5: x^3 (10 + 15 x + 12 x^2) 6: x^3 (20 + 45 x + 72 x^2 + 60 x^3) giving 1 3-cycle in K_3 4 3-cycles and 3 4-cycles in K_4 From Peter Luschny, Oct 22 2017: (Start) Prepending six zeros leads to the regular triangle: [0] 0 [1] 0, 0 [2] 0, 0, 0 [3] 0, 0, 0,  1 [4] 0, 0, 0,  4,   3 [5] 0, 0, 0, 10,  15,   12 [6] 0, 0, 0, 20,  45,   72,   60 [7] 0, 0, 0, 35, 105,  252,  420,   360 [8] 0, 0, 0, 56, 210,  672, 1680,  2880,  2520 [9] 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160 (End) MAPLE A284947row := n -> seq(`if`(k<3, 0, pochhammer(3, k-3)*binomial(n, k)), k=0..n): seq(A284947row(n), n=3..10); # Peter Luschny, Oct 22 2017 MATHEMATICA CoefficientList[Table[-(n*x*(2 - x + n*x - 2*HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x]))/4, {n, 10}], x] // Flatten CROSSREFS Cf. A002807 (row sums of a(n)). Cf. A144151 (generalization to include 1- and 2-"cycles"). Sequence in context: A073275 A293496 A290326 * A261099 A030120 A058878 Adjacent sequences:  A284944 A284945 A284946 * A284948 A284949 A284950 KEYWORD nonn,tabf AUTHOR Eric W. Weisstein, Apr 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.