This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284916 Lexicographically earliest sequence of positive integers such that the same (Euclidean) distance does not occur twice between any two distinct pairs of points ((n, a(n)), (k, a(k)). 2
 1, 1, 2, 5, 9, 14, 7, 19, 25, 2, 33, 43, 54, 67, 27, 47, 64, 78, 94, 118, 17, 129, 144, 103, 156, 174, 199, 37, 114, 199, 78, 183, 220, 168, 239, 70, 272, 302, 258, 292, 311, 350, 376, 409, 431, 458, 479, 324, 504, 550, 281, 424, 563, 527, 489, 591, 129, 636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Peter Kagey and Giovanni Resta, Table of n, a(n) for n = 1..2500 (first 500 terms from Peter Kagey) EXAMPLE Let p_n = (n, a(n)). For n = 4, a(4) = 5 because d(p_3, p_4) = sqrt(2) = d(p_2, p_3) if a(4) = 1, d(p_3, p_4) = 1       = d(p_1, p_2) if a(4) = 2, d(p_3, p_4) = sqrt(2) = d(p_2, p_3) if a(4) = 3, d(p_3, p_4) = sqrt(5) = d(p_1, p_3) if a(4) = 4, therefore a(4) = 5, the least value that does not create a contradiction. MATHEMATICA dq[p_, q_] := Total[(p - q)^2]; good[w_] := Catch[ Do[ If[ MemberQ[di, dq[w, P[[i]]]], Throw@False], {i, Length@ P}]; True]; P = di = {}; n = 0; While[n < 58, n++; k = 1; While[! good[{n, k}], k++]; di = Join[di, dq[{n, k}, #] & /@ P]; AppendTo[P, {n, k}]]; Last /@ P (* Giovanni Resta, Apr 06 2017 *) CROSSREFS Cf. A005282 (Chebyshev distance), A284917 (Taxicab distance). Sequence in context: A109094 A049753 A126326 * A070986 A074793 A161767 Adjacent sequences:  A284913 A284914 A284915 * A284917 A284918 A284919 KEYWORD nonn,look AUTHOR Peter Kagey, Apr 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 19:03 EST 2018. Contains 317214 sequences. (Running on oeis4.)