

A284886


Numbers k such that (14*10^k101)/3 is prime.


0



1, 2, 4, 6, 14, 20, 305, 470, 507, 1104, 1152, 1725, 1944, 5864, 6785, 7446, 11460, 12412, 16302, 19787, 24029, 27240, 67235, 83471, 89480, 116112
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For k>1, numbers such that the digit 4 followed by k2 occurrences of the digit 6 followed by the digits 33 is prime (see Example section).
a(27) > 2*10^5.


LINKS

Table of n, a(n) for n=1..26.
Makoto Kamada, Factorization of nearrepdigitrelated numbers.
Makoto Kamada, Search for 46w33.


EXAMPLE

4 is in this sequence because (14*10^4  101)/3 = 46633 is prime.
Initial terms and primes associated:
a(1) = 1, 13;
a(2) = 2, 433;
a(3) = 4, 46633;
a(4) = 6, 4666633;
a(5) = 14, 466666666666633; etc.


MATHEMATICA

Select[Range[1, 100000], PrimeQ[(14*10^#  101)/3] &]


CROSSREFS

Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A032353 A062112 A226302 * A249339 A307676 A084685
Adjacent sequences: A284883 A284884 A284885 * A284887 A284888 A284889


KEYWORD

nonn,more,hard


AUTHOR

Robert Price, Apr 04 2017


EXTENSIONS

a(26) from Robert Price, Feb 23 2019


STATUS

approved



