login
A284883
Positions of 0 in A284881.
5
4, 6, 10, 12, 14, 16, 22, 24, 28, 30, 32, 34, 40, 42, 44, 46, 52, 54, 58, 60, 64, 66, 68, 70, 76, 78, 82, 84, 86, 88, 94, 96, 98, 100, 106, 108, 112, 114, 118, 120, 122, 124, 130, 132, 134, 136, 142, 144, 148, 150, 154, 156, 158, 160, 166, 168, 172, 174, 176
OFFSET
1,1
COMMENTS
This sequence and A284882 and A284884 form a partition of the positive integers. For n>=1, we have 3n-a(n) in {0,1}, 3*n+1-A284883(n) in {0,1,2,3}, and 3*n-1-A284884(n) in {0,1,2}.
A284881 = (1,-1,1,0,-1,0,1,-1,1,0,-1,0,1,0,...); thus
A284882 = (2,5,8,11,15,18,...)
A284883 = (4,6,10,12,14,16,...)
A284884 = (1,3,7,9,13,17,...).
LINKS
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 1, 1, 0}}] &, {0}, 6] (* A284878 *)
d = Differences[s] (* A284881 *)
Flatten[Position[d, -1]] (* A284882 *)
d2 = Flatten[Position[d, 0]] (* A284883 *)
Flatten[Position[d, 1]] (* A284884 *)
d2/2 (* A284885 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 16 2017
STATUS
approved