login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284856 Array read by antidiagonals: T(n,k) = number of aperiodic necklaces (Lyndon words) with n beads and k colors that are the same when turned over. 10
1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 6, 3, 0, 6, 10, 12, 12, 6, 0, 7, 15, 20, 30, 24, 7, 0, 8, 21, 30, 60, 60, 42, 14, 0, 9, 28, 42, 105, 120, 138, 78, 18, 0, 10, 36, 56, 168, 210, 340, 252, 144, 28, 0, 11, 45, 72, 252, 336, 705, 620, 600, 234, 39, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of primitive (period n) periodic palindromes of length n using a maximum of k different symbols.

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

FORMULA

T(n, k) = Sum_{d | n} mu(n/d) * A284855(d, k).

EXAMPLE

Table starts:

1  2   3    4    5     6     7      8      9     10 ...

0  1   3    6   10    15    21     28     36     45 ...

0  2   6   12   20    30    42     56     72     90 ...

0  3  12   30   60   105   168    252    360    495 ...

0  6  24   60  120   210   336    504    720    990 ...

0  7  42  138  340   705  1302   2212   3528   5355 ...

0 14  78  252  620  1290  2394   4088   6552   9990 ...

0 18 144  600 1800  4410  9408  18144  32400  54450 ...

0 28 234 1008 3100  7740 16758  32704  58968  99900 ...

0 39 456 2490 9240 26985 66864 146916 294480 548955 ...

...

MATHEMATICA

b[d_, k_] := If[EvenQ[d], (k^(d/2) + k^(d/2 + 1))/2, k^((d + 1)/2)];

a[n_, k_] := DivisorSum[n, MoebiusMu[n/#] b[#, k] &];

Table[a[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-Fran├žois Alcover, Jun 06 2017, translated from PARI *)

PROG

(PARI)

b(d, k) = if(d % 2 == 0, (k^(d/2) + k^(d/2+1))/2, k^((d+1)/2));

a(n, k) = sumdiv(n, d, moebius(n/d) * b(d, k));

for(n=1, 10, for(k=1, 10, print1( a(n, k), ", "); ); print(); );

CROSSREFS

Columns 2-6 are: A056493, A056494, A056495, A056496, A056497.

Sequence in context: A321980 A208544 A208535 * A276550 A294438 A074650

Adjacent sequences:  A284853 A284854 A284855 * A284857 A284858 A284859

KEYWORD

nonn,tabl

AUTHOR

Andrew Howroyd, Apr 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 18:56 EDT 2020. Contains 334664 sequences. (Running on oeis4.)