

A284837


Expansion of Sum_{i>=1} x^(i^3)/(1  x^(i^3)) * Product_{j=1..i} 1/(1  x^(j^3)).


0



1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 51, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 76, 77, 78, 81, 82, 90, 91, 92, 94, 95, 96, 99, 100, 110, 111, 112, 114, 115, 116, 119, 120, 131, 132, 133, 135
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Total number of largest parts in all partitions of n into cubes (A000578).


LINKS

Table of n, a(n) for n=1..75.
Index entries for related partitioncounting sequences


FORMULA

G.f.: Sum_{i>=1} x^(i^3)/(1  x^(i^3)) * Product_{j=1..i} 1/(1  x^(j^3)).


EXAMPLE

a(10) = 11 because we have [8, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 1 + 10 = 11.


MATHEMATICA

nmax = 75; Rest[CoefficientList[Series[Sum[x^i^3/(1  x^i^3) Product[1/(1  x^j^3), {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x]]


CROSSREFS

Cf. A000578, A003108, A046746, A092311, A281613, A284831.
Sequence in context: A013937 A118065 A020661 * A068937 A285316 A182768
Adjacent sequences: A284834 A284835 A284836 * A284838 A284839 A284840


KEYWORD

nonn


AUTHOR

Ilya Gutkovskiy, Apr 03 2017


STATUS

approved



