This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284837 Expansion of Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) * Product_{j=1..i} 1/(1 - x^(j^3)). 0
 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 51, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 76, 77, 78, 81, 82, 90, 91, 92, 94, 95, 96, 99, 100, 110, 111, 112, 114, 115, 116, 119, 120, 131, 132, 133, 135 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Total number of largest parts in all partitions of n into cubes (A000578). LINKS FORMULA G.f.: Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) * Product_{j=1..i} 1/(1 - x^(j^3)). EXAMPLE a(10) = 11 because we have [8, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 1 + 10 = 11. MATHEMATICA nmax = 75; Rest[CoefficientList[Series[Sum[x^i^3/(1 - x^i^3) Product[1/(1 - x^j^3), {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x]] CROSSREFS Cf. A000578, A003108, A046746, A092311, A281613, A284831. Sequence in context: A013937 A118065 A020661 * A068937 A285316 A182768 Adjacent sequences:  A284834 A284835 A284836 * A284838 A284839 A284840 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.