login
A284829
Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) * Product_{j>=i} 1/(1 - mu(j)^2*x^j), where mu() is the Moebius function (A008683).
1
1, 3, 5, 9, 13, 23, 30, 45, 64, 89, 118, 165, 211, 282, 369, 475, 606, 779, 978, 1236, 1547, 1922, 2375, 2936, 3602, 4403, 5362, 6506, 7864, 9493, 11399, 13661, 16317, 19443, 23122, 27415, 32418, 38268, 45065, 52968, 62125, 72742, 84969, 99112, 115409, 134139, 155665, 180368, 208658, 241051
OFFSET
1,2
COMMENTS
Total number of smallest parts in all partitions of n into squarefree parts (A005117).
FORMULA
G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) * Product_{j>=i} 1/(1 - mu(j)^2*x^j).
EXAMPLE
a(5) = 13 because we have [5], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 1 + 3 + 5 = 13.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 - x^i) Product[1/(1 - MoebiusMu[j]^2 x^j), {j, i, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^50); Vec(sum(i=1, 50, moebius(i)^2*x^i/(1 - x^i) * prod(j=i, 50, 1/(1 - moebius(j)^2*x^j)))) \\ Indranil Ghosh, Apr 04 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 03 2017
STATUS
approved