The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284825 Number of partitions of n into 3 parts without common divisors such that every pair of them has common divisors. 26
 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 5, 0, 0, 0, 1, 0, 5, 0, 1, 0, 6, 0, 6, 0, 0, 0, 4, 0, 6, 0, 0, 0, 9, 0, 2, 1, 2, 0, 9, 0, 8, 1, 1, 0, 5, 0, 14, 0, 1, 0, 15, 0, 14, 0, 0, 1, 14, 0, 14, 0, 2, 0, 15, 0, 6, 1, 2, 1, 11, 0, 18, 1, 1, 0, 10, 0, 23 (list; graph; refs; listen; history; text; internal format)
 OFFSET 31,11 COMMENTS The Heinz numbers of these partitions are the intersection of A014612 (triples), A289509 (relatively prime), and A337694 (pairwise non-coprime). - Gus Wiseman, Oct 16 2020 LINKS Alois P. Heinz, Table of n, a(n) for n = 31..10000 FORMULA a(n) > 0 iff n in { A230035 }. a(n) = 0 iff n in { A230034 }. EXAMPLE a(31) = 1: [6,10,15] = [2*3,2*5,3*5]. a(41) = 2: [6,14,21], [6,15,20]. From Gus Wiseman, Oct 14 2020: (Start) Selected terms and the corresponding triples:   a(31)=1: a(41)=2: a(59)=3:  a(77)=4:  a(61)=5:  a(71)=6: -------------------------------------------------------------   15,10,6  20,15,6  24,20,15  39,26,12  33,22,6   39,26,6            21,14,6  24,21,14  42,20,15  40,15,6   45,20,6                     35,14,10  45,20,12  45,10,6   50,15,6                               50,15,12  28,21,12  35,21,15                                         36,15,10  36,20,15                                                   36,21,14 (End) MAPLE a:= proc(n) option remember; add(add(`if`(igcd(i, j)>1       and igcd(i, j, n-i-j)=1 and igcd(i, n-i-j)>1 and       igcd(j, n-i-j)>1, 1, 0), j=i..(n-i)/2), i=2..n/3)     end: seq(a(n), n=31..137); MATHEMATICA a[n_] := a[n] = Sum[Sum[If[GCD[i, j] > 1 && GCD[i, j, n - i - j] == 1 && GCD[i, n - i - j] > 1 && GCD[j, n - i - j] > 1, 1, 0], {j, i, (n - i)/2} ], {i, 2, n/3}]; Table[a[n], {n, 31, 137}] (* Jean-François Alcover, Jun 13 2018, from Maple *) stabQ[u_, Q_]:=And@@Not/@Q@@@Tuples[u, 2]; Table[Length[Select[IntegerPartitions[n, {3}], GCD@@#==1&&stabQ[#, CoprimeQ]&]], {n, 31, 100}] (* Gus Wiseman, Oct 14 2020 *) CROSSREFS Cf. A082024, A230034, A230035. A023023 does not require pairwise non-coprimality, with strict case A101271. A202425 and A328672 count these partitions of any length, ranked by A328868. A284825*6 is the ordered version. A307719 is the pairwise coprime instead of non-coprime version. A337599 does not require relatively primality, with strict case A337605. A200976 and A328673 count pairwise non-coprime partitions. A289509 gives Heinz numbers of relatively prime partitions. A327516 counts pairwise coprime partitions, ranked by A333227. A337694 gives Heinz numbers of pairwise non-coprime partitions. Cf. A000217, A000741, A001399, A007304, A014612, A220377, A318716, A328679, A337604, A337666. Sequence in context: A182032 A265245 A110270 * A318875 A187143 A187144 Adjacent sequences:  A284822 A284823 A284824 * A284826 A284827 A284828 KEYWORD nonn,look AUTHOR Alois P. Heinz, Apr 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 06:59 EDT 2021. Contains 343125 sequences. (Running on oeis4.)