login
A284812
Numbers n such that n' = d_1^1 + d_2^2 + ... + d_k^k where d_1, d_2, ..., d_k are the digits of n, with MSD(n) = d_1 and LSD(n) = d_k, and n' is the arithmetic derivative of n.
1
4, 34, 78, 47863, 67277, 472621, 525038, 5576423, 7541551, 12485411, 13600033, 41777431, 48288701, 64979641, 97807441, 136272511, 153060223, 201916441, 214821521, 225015223
OFFSET
1,1
EXAMPLE
47863' = 2104 = 4^1 + 7^2 + 8^3 + 6^4 + 3^5.
MAPLE
with(numtheory): P:=proc(q) local a, k, n, p; for n from 1 to q do a:=convert(n, base, 10);
if add(a[k]^(nops(a)-k+1), k=1..nops(a))=n*add(op(2, p)/op(1, p), p=ifactors(n)[2])
then print(n); fi; od; end: P(10^9);
CROSSREFS
Sequence in context: A227397 A365537 A281827 * A053902 A054464 A002101
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Apr 07 2017
STATUS
approved