login
A284784
The number of partitions of n which represent Chomp positions with Sprague-Grundy value 10.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 10, 20, 18, 18, 22, 22, 46, 28, 54, 60, 58, 74, 90, 86, 114, 140, 178, 192, 193, 312, 312, 402, 421, 581, 642, 730, 890, 1080, 1294, 1429, 1716, 2186, 2488, 2912, 3385, 3888, 4499, 5458, 6232, 7178, 8839, 9925, 11382, 13108, 15153, 17719, 20391, 23135, 27251, 30166, 35634, 40630, 46393
OFFSET
1,11
COMMENTS
Chomp positions with Sprague-Grundy value 0 are the losing positions. Their number is given in A112470.
REFERENCES
P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
LINKS
Thomas S. Ferguson, Game Theory (lecture notes + exercise questions for a course on Combinatorial Game Theory).
P. M. Grundy, Mathematics and games, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - N. J. A. Sloane, Nov 17 2018]
R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438-444.
R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351-354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas J Wolf, Apr 02 2017
STATUS
approved