OFFSET
0,4
COMMENTS
From Gus Wiseman, Nov 15 2022: (Start)
Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 3 vertices and more than one branch of the root. This would imply a(n) = A187306(n+1) - A005043(n+1). For example, the a(1) = 1 through a(5) = 22 trees are:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)oo) ((oo)ooo) ((oo)oooo)
(o(oo)o) ((ooo)oo) ((ooo)ooo)
(oo(oo)) (o(oo)oo) ((oooo)oo)
(o(ooo)o) (o(oo)ooo)
(oo(oo)o) (o(ooo)oo)
(oo(ooo)) (o(oooo)o)
(ooo(oo)) (oo(oo)oo)
(oo(ooo)o)
(oo(oooo))
(ooo(oo)o)
(ooo(ooo))
(oooo(oo))
(((oo)o)oo)
((o(oo))oo)
((oo)(oo)o)
((oo)o(oo))
(o((oo)o)o)
(o(o(oo))o)
(o(oo)(oo))
(oo((oo)o))
(oo(o(oo)))
(End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2105
Alois P. Heinz, Animation of a(6)=54 walks
FORMULA
G.f.: (1-2*x-x^2-sqrt(1-4*x+2*x^2+4*x^3-3*x^4))/(2*(x+1)*x^3).
Recursion: see Maple program.
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} (k+1)^2/(n-k)*Sum_{i=0..n-1-2*k} C(i,n-1-2*k-i)*C(n-k,i), n>0, a(0)=0. - Vladimir Kruchinin, Mar 20 2023
MAPLE
a:= proc(n) option remember; `if`(n<3, (3-n)*n/2,
((n^2-n+3)*a(n-1)+(5*n-2)*n*a(n-2)+
3*(n-1)*n*a(n-3))/((n+3)*(n-1)))
end:
seq(a(n), n=0..35);
MATHEMATICA
CoefficientList[Series[(1 - 2*x - x^2 - Sqrt[1 - 4*x + 2*x^2 + 4*x^3 - 3*x^4])/(2*(x + 1)*x^3), {x, 0, 50}], x] (* Indranil Ghosh, Apr 02 2017 *)
PROG
(Maxima)
a(n):=if n=0 then 0 else sum(((k+1)^2*sum(binomial(i, n-1-2*k-i)*binomial(n-k, i), i, 0, n-1-2*k))/(n-k), k, 0, floor((n)/2)); /* Vladimir Kruchinin, Mar 20 2023 */
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Apr 02 2017
STATUS
approved