%I
%S 0,2,0,0,0,3,0,2,4,4,8,9,8,11,16,12,38,24,36,37,54,65,72,106,100,156,
%T 152,199,202,287,404,358,514,552,606,783,912,1095,1246,1504,1694,2050,
%U 2230,2743,3294,3487,4352,4930,5644,6586,7508,8681,10100,11629,13168
%N The number of partitions of n which represent Chomp positions with SpragueGrundy value 1.
%C Chomp positions with SpragueGrundy value 0 are the losing positions. The number of those positions is given in A112470.
%D P. M. Grundy, Mathematics and games, Eureka 2 (1939), 68; reprinted (1964), Eureka 27, 911.
%D R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438444.
%D R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351354.
%H Thomas S. Ferguson, <a href="https://www.math.ucla.edu/~tom/Game_Theory/comb.pdf">Game Theory</a> (lecture notes + exercise questions for a course on Combinatorial Game Theory).
%H P. M. Grundy, <a href="/A002188/a002188.pdf">Mathematics and games</a>, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 68. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal.  _N. J. A. Sloane_, Nov 17 2018]
%Y Cf. A112471, A112472, A112473.
%K nonn
%O 1,2
%A _Thomas J Wolf_, Apr 01 2017
