login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284653 0-limiting word of the morphism 0 -> 1, 1 -> 0110. 3
0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0 -> 1, 1 -> 0110 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 1 -> 0110 -> 1011001101 -> 0110101100110110110011010110; if the number of iterations is odd, the 1-word evolves from 0 -> 1 -> 0110 -> 1011001101, as in A284656.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1}, 1 -> {0, 1, 1, 0}}] &, {0}, 6] (* A284653 *)

Flatten[Position[s, 0]]  (* A284654 *)

Flatten[Position[s, 1]]  (* A284655 *)

CROSSREFS

Cf. A284654, A284655, A284656.

Sequence in context: A296066 A073070 A189687 * A099104 A066829 A194664

Adjacent sequences:  A284650 A284651 A284652 * A284654 A284655 A284656

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 01:06 EDT 2019. Contains 321406 sequences. (Running on oeis4.)