login
Numbers k such that (4*10^k + 149)/9 is prime.
0

%I #17 Jun 08 2024 08:55:26

%S 0,2,3,6,12,15,17,24,26,30,156,341,519,1284,1455,1841,1874,3410,3890,

%T 6185,8472,8696,67784,72174,84779,87669,99693,114296,119474,152253,

%U 183659

%N Numbers k such that (4*10^k + 149)/9 is prime.

%C For k > 1, numbers k such that k-2 occurrences of the digit 4 followed by the digits 61 is prime (see Example section).

%C a(32) > 2*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 4w61</a>.

%e 3 is in this sequence because (4*10^3 + 149)/9 = 461 is prime.

%e Initial terms and associated primes:

%e a(1) = 0, 17;

%e a(2) = 2, 61;

%e a(3) = 3, 461;

%e a(4) = 6, 444461;

%e a(5) = 12, 444444444461; etc.

%t Select[Range[0, 100000], PrimeQ[(4*10^# + 149)/9] &]

%o (PARI) isok(k) = ispseudoprime((4*10^k + 149)/9); \\ _Altug Alkan_, Apr 12 2018

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more,hard

%O 1,2

%A _Robert Price_, Mar 30 2017

%E a(28)-a(31) from _Robert Price_, Apr 12 2018