login
A284604
Quadratic recurrence: a(n+2) = a(n+1)^2 + a(n)^2 + 1, with a(0) = a(1) = 1.
0
1, 1, 3, 11, 131, 17283, 298719251, 89233191216703091, 7962562414716697755180182566955283, 63402400208259008611705446682872670539115181497111590988296570564371
OFFSET
0,3
FORMULA
a(n+3) = a(n+2)^2 + a(n+2) - a(n)^2, with a(0) = a(1) = 1, a(2) = 3.
a(n) ~ c^(2^n), where c = 1.356519333072951374233963037913978335267300244021120535099185060013... - Vaclav Kotesovec, Apr 15 2017
MATHEMATICA
RecurrenceTable[{a[n + 2] == a[n + 1]^2 + a[n]^2 + 1, a[0] == 1, a[1] == 1}, a, {n, 0, 12}]
PROG
(Maxima) a(n) := if (n=0 or n=1) then 1 else a(n-1)^2 + a(n-2)^2 + 1; makelist(a(n), n, 0, 12);
(Magma) [n le 2 select 1 else Self(n-1)^2+Self(n-2)^2+1: n in [1..10]]; // Bruno Berselli, Mar 30 2017
CROSSREFS
Cf. A000283.
Sequence in context: A088076 A375792 A276258 * A072878 A112957 A057205
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Mar 30 2017
STATUS
approved